289

Small RNAs – The Big Players in Developing Salt-Resistant Plants

Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I., (2014). Plant salt-

tolerance mechanisms. Trends in Plant Science, 19(6), 371–379. https://doi.org/10.1016/j.

tplants.2014.02.001.

Deng, P., Wang, L., Cui, L., Feng, K., Liu, F., Du, X., Tong, W., et al., (2015). Global

identification of microRNAs and their targets in barley under salinity stress. PLoS One,

10(9), e0137990. https://doi.org/10.1371/journal.pone.0137990.

Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., Van, D. G. E., et al.,

(2004). The role of Δ1-pyrroline-5-carboxylate dehydrogenase in proline degradation. The

Plant Cell, 16(12), 3413–3425.

Devi, S. R., Madhav, M., Kumar, G. R., Goel, A., Umakanth, B., Jahnavi, B., & Viraktamath,

B., (2013). Identification of abiotic stress miRNA transcription factor binding motifs

(TFBMs) in rice. Gene., 531(1), 15–22. https://doi.org/10.1016/j.gene.2013.08.060.

Devkar, V., Thirumalaikumar, V. P., Xue, G. P., Vallarino, J. G., Tureckova, V., Strnad, M.,

Fernie, A. R., et al., (2020). Multifaceted regulatory function of tomato SlTAF1 in the

response to salinity stress. New Phytologist., 225(4), 1681–1698. https://doi.org/10.1111/

nph.16247.

Dezulian, T., Remmert, M., Palatnik, J. F., Weigel, D., & Huson, D. H., (2006). Identification

of plant microRNA homologs. Bioinformatics, 22(3), 359–360. https://doi.org/10.1093/

bioinformatics/bti802.

Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., & Zheng, Y., (2009). Differential expression

of miRNAs in response to salt stress in maize roots. Annals of Botany, 103(1), 29–38.

https://doi.org/10.1093/aob/mcn205.

Ding, Y., Chan, C. Y., & Lawrence, C. E., (2004). Sfold web server for statistical folding

and rational design of nucleic acids. Nucleic Acids Research, 32(suppl_2), W135–W141.

https://doi.org/10.1093/nar/gkh449.

Dolata, J., Bajczyk, M., Bielewicz, D., Niedojadlo, K., Niedojadlo, J., Pietrykowska, H.,

Walczak, W., et al., (2016). Salt stress reveals a new role for ARGONAUTE1 in miRNA

biogenesis at the transcriptional and posttranscriptional levels. Plant Physiology, 172(1),

297–312. https://doi.org/10.1104/pp.16.00830.

Dunoyer, P., Melnyk, C., Molnar, A., & Slotkin, R. K., (2013). Plant mobile small RNAs. Cold

Spring Harbor Perspectives in Biology, 5(7), a017897. https://doi.org/10.1101/cshperspect.

a017897.

Dutta, T., Neelapu, N. R. R., Wani, S. H., & Surekha, C., (2020). Salt stress tolerance and

small RNA. In: Guleria, P., & Kumar, V., (eds.), Plant Small RNA (pp. 191–207). Academic

Press. https://doi.org/10.1016/B978-0-12-817112-7.00010-9.

Eamens, A. L., Smith, N. A., Curtin, S. J., Wang, M. B., & Waterhouse, P. M., (2009). The

Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand

selection from microRNA duplexes. RNA, 15(12), 2219–2235. https://doi.org/10.1261/

rna.1646909.

Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J.

S., Givan, S. A., et al., (2007). High-throughput sequencing of Arabidopsis microRNAs:

Evidence for frequent birth and death of MIRNA genes. PloS One, 2(2), e219. https://doi.

org/10.1371/journal.pone.0000219.

Fang, Y., Xie, K., & Xiong, L., (2014). Conserved miR164-targeted NAC genes negatively

regulate drought resistance in rice. Journal of Experimental Botany, 65(8), 2119–2135.

https://doi.org/10.1093/jxb/eru072.